This page has all of the homework with answers for the first semester of College Physics. You can go directly to each section using the links above or by using the menu.
v = 0 m/sec vo = 8.94 m/sec s = ? a = -6.86 m/sec² t = ?
v = vo + at; t = (v - vo)/a = (0 + 8.94 m/sec)/(6.86 m/sec²) = 1.3 sec
v² = vo² + 2as;  
s = [v² - vo²]/2a = [0 - (8.94 m/sec)²]/(2)(-6.86 m/sec²) = 5.8 m
v = 0 m/sec vo = ? m/sec s = 30 m a = -3.43 m/sec² t = ?
v² = vo² + 2as;
vo = [v² - 2as]½ = [0 + (2)(3.43 m/sec²)(30 m)]½ = 14.35 m/sec
v = vo + at; t = (v - vo)/a = (0 + 14.35 m/sec)/(3.43 m/sec²) = 4.18 sec
v = 0 m/sec vo = ? m/sec s = ? m a = -4.86 m/sec² t = 2.1 sec
v = vo + at; vo = v - at = 0 + (4.86 m/sec²)(2.1 sec) = 10.2 m/sec
v² = vo² + 2as;  
s = [v² - vo²]/2a = [0 - (10.2 m/sec)²]/(2)(-4.86 m/sec²) = 10.7 m
v = -20.0 m/sec vo = ? m/sec s = ? m a = -9.8 m/sec² t = 2.0 sec
vo = v - at = (-20.0 m/sec) + (9.8 m/sec²)(2.0 sec) = -0.4 m/sec
v² = vo² + 2as;
s = [v² - vo²]/2a = [(-20 m/sec)² - (-0.4 m/sec)²]/(2)(-9.8 m/sec²) = -20.4 m
From start to max:
v = 0 m/sec vo = ? m/sec s = 10 m a = -9.8 m/sec² t = ? sec
v² = vo² + 2as; vo = [v² - 2as]½ = [0 - (2)(-9.8 m/sec²)(10 m)]½ = 14 m/sec
v = vo + at; t = (v - vo)/a = (0 - 14 m/sec)/(-9.8 m/sec²) = 1.43 sec
Total time is the time to go to max plus the time to come back down:
2(1.43 sec) = 2.86 sec
v = ? m/sec vo = 0 m/sec s = ? m a = -9.8 m/sec² t = 4.0 sec
s = vot + ½at² = 0 + ½(-9.8 m/sec²)(4 sec)² = -78.4 m
The well is 78.4 m deep.
Also:
v = vo + at = (0 m/sec) - (9.8 m/sec²)(4.0 sec) = -39.2 m/sec
1st Time: v = ? m/sec vo = 0 m/sec s = ? m a = -9.8 m/sec² t = 3.0 sec
s = vot + ½at² = 0 + ½(-9.8 m/sec²)(3 sec)² = -44.1 m
2nd Time: v = ? m/sec vo = -3.1 m/sec s = ? m a = -9.8 m/sec² t = 2.7 sec
s = vot + ½at² = (-3.1 m/sec)(2.7 sec) + ½(-9.8 m/sec²)(2.7 sec)² = -44.1 m
Both calculations say the building is 44.1 m high. The model works!
v = -50 m/sec vo = 0 m/sec s = ? m a = -9.8 m/sec² t = ? sec
t = (v - vo)/a = [(-50 m/sec) - 0]/(-9.8 m/sec²) = 5.1 sec
s = vot + ½at² = 0 + ½(-9.8 m/sec²)(5.1 sec)² = -127.5 m
Here are some mathematical relationships that will be helpful for some of these two dimensional problems. |
Calculate components of the initial velocity in x and y.
In y: voy = vosin25° = (3 m/sec)(sin25°) = 1.27 m/sec
In x: vox = vocos25° = (3 m/sec)(cos25°) = 2.72 m/sec
y | x | |
v | ? m/sec | 2.72 m/sec |
vo | 1.27 m/sec | 2.72 m/sec |
s | -0.5 m | ? m |
a | -9.8 m/sec | 0 m/sec |
t | ? sec | ? sec |
Make a table from jump to water.
Solve for v in the y-direction, then solve for t in the y-direction. Use the time from the y-direction in the x-direction to determine the distance in the x-direction.
vy = [voy² + 2aysy]½ = [(1.27 m/sec)² + (2)(-9.8 m/sec²)(-0.5 m)]½
= -3.38 m/sec
t = (vy - voy)/ay = [(-3.38 m/sec) - 1.27 m/sec]/(-9.8 m/sec²) = 0.474 sec
sx = voxt + ½at² = (2.72 m/sec)(0.474 sec) + 0 = 1.29 m
y | x | |
v | ? m/sec | ? m/sec |
vo | 0 m/sec | ? m/sec |
s | -1000 m | 2000 m |
a | -9.8 m/sec | 0 m/sec |
t | ? sec | ? sec |
Make a table from drop to ground.
Solve for v in the y-direction, then solve for t in the y-direction. Use the time from the y-direction in the x-direction to determine the velocity in the x-direction.
vy = [voy² + 2aysy]½ = [0 + (2)(-9.8 m/sec²)(-1000 m)]½
= -140 m/sec
t = (vy - voy)/ay = [(-140 m/sec) - 0]/(-9.8 m/sec²) = 14.3 sec
vox = sx/t = (2000 m)/(14.3 sec) = 140 m/sec
For the final velocity:
v = [(vx)² + (vy)²]½ = [(-140 m/sec)² + (140 m/sec)²]½ = 198 m/sec
θ = tan-1[(vx)/vy)] = tan-1(140/140) = 45°
v = 198 m/sec at an angle of 45° below horizontal.
Get the initial velocity from the initial components.
v0 = [(vox)² + (voy)²]½ = [(160 m/sec)² + (75 m/sec)²]½ = 176.7 m/sec
θ = tan-1[(voy)/vox)] = tan-1(75/160) = 25.1°
The initial velocity is 176.7 m/sec at 25.1° above horizontal.
y | x | |
v | 0 m/sec | 160 m/sec |
vo | 75 m/sec | 160 m/sec |
s | ? m | ? m |
a | -9.8 m/sec | 0 m/sec |
t | ? sec | ? sec |
Make a table going from start to max.
Solve for s in the y-direction to get the maximum height.
sy = [(vy)² - (voy)²)]/[2ay] = [(0 - (75 m/sec)²)]/[2(-9.8 m/sec²)] = 287 m
t = (vy - voy)/ay = [(0 m/sec) - 75 m/sec]/(-9.8 m/sec²) = 7.65 sec (to max)
The total time is 2(7.65 sec) = 15.3 sec
For the distance in x (the range): sx = vot = (160 m/sec)(15.3 sec) = 2449 m
y | x | |
v | vsinθ m/sec | vcosθ m/sec |
vo | vosinθ m/sec | vocosθ m/sec |
s | 0 m | 30 m |
a | -9.8 m/sec | 0 m/sec |
t | t sec | t sec |
Make a table going from start to end.
This will require solving two equations and two unknowns. Solve for t in both the x-direction and the y-direction, then set those expressions equal to each other.
In x: 30 m = (vosinθ m/sec)(t) or t = (30 m)/(vosinθ m/sec)
In y: sy = voyt + ½ayt² = [voy + ½ayt]t
0 = [voy + ½ayt]t says that either t = 0 or [voy + ½ayt] = 0
Time equal to zero is before it starts, so the second expression is needed to agree with the physical situation. So, from y:
t = -voy/½a = -(vosinθ)/½a
That means:
-(vosinθ)/½a = (30 m)/(vosinθ m/sec) or -(vo²)(sinθ)(cosθ) = ½a(30)
vo = -[½a(30)]/[(sinθ)(cosθ)]½ = [(15 m)(9.8 m/sec²)]/[(sin40°)(cos40°)]½
= 17.3 m/sec
From part (a):
vox = vocosθ m/sec = (17.3 m/sec)cos40° = 13.3 m/sec
voy = vosinθ = (17.3 m/sec)sin40° = 11.12 m/sec
Make a table going from start to max.
y | x | |
v | 0 m/sec | vx = vox m/sec |
vo | 11.12 m/sec | 13.3 m/sec |
s | ? m | 15 m |
a | -9.8 m/sec | 0 m/sec |
t | t sec | t sec |
sy = [(vy)² - (voy)²)]/[2ay] = [(0 - (11.2 m/sec)²)]/[2(-9.8 m/sec²)]
= 6.4 m
t = (vy - voy)/ay = [(0 m/sec) - 11.2 m/sec]/(-9.8 m/sec²) = 1.14 sec (to max)
The total time is 2(1.14 sec) = 2.28 sec
Make a table going from start to end.
y | x | |
v | vsinθ m/sec | vx = vox m/sec |
vo | vosinθ m/sec | vocosθ m/sec |
s | -15 m | 10 m |
a | -9.8 m/sec | 0 m/sec |
t | ? sec | ? sec |
Solve for the time in x and substitute the resulting expression into the distance expression for y.
In x: t = (10 m)/(vocos40°)
sy = (voy)t + ½at²
Substiute t from above and then solve for the initial velocity, vo.
-15 m = (vo)(sin40°)[(10 m)/(vocos40°)] + ½(-9.8 m/sec²)[(10 m)/(vocos40°)]²
vo = 5.975 m/sec; voy = 3.84 m/sec; vox = 4.58 m/sec;
t = (10 m)/(4.58 m/sec) = 2.18 sec
vy = 3.84 m/sec - (9.8 m/sec²)(2.18 sec) = -17.52 m/sec
v = [(4.58 m/sec)² + (-17.52 m/sec)²]½ = 18.1 m/sec
θ = tan-1(-17.52/4.58) = 75.3°
t = 2.18 sec, v = -17.52 m/sec at 75.3° below the positive x-axis.
y | x | |
v | 0 m/sec | vx = vox m/sec |
vo | ? m/sec | ? m/sec |
s | ? m | ? m |
a | -9.8 m/sec | 0 m/sec |
t | 1.05 sec | 1.05 sec |
Symmetry makes this problem much easier.
Make a table going from start to max.
0 = voy + at; voy = -at = (9.8 m/sec²)(1.05 sec) = 10.29 m/sec
vo = (voy)/sinθ = (10.29 m/sec)/sin10° = 59.3 m/sec at 10°
vox = (vo)(cosθ) = (59.3 m/sec)(cos10°) = 58.4 m/sec
Because of the symmetry of this problem the final velocity in y will be the negative of the initial velocity in y. The velocity in x remains constant. θ = tan-1(-10.29/58.4) = -10°
v = [(vx)² + (vy)²]½ = 59.3 m/sec at -10°
sx = (58.4 m/sec)(2.1 sec) = 123 m
EXTRA PROBLEMS
"Your students might immediately want to plug the launch speed and launch angle into the range equation,R is the range, or the distance in x. My questions is: can you derive this equation using our method of doing these problems?R=(v02 sin2θ)/g,
where v0 is the launch speed, g is the acceleration due to gravity, and θ is the vertical launch angle."
Force up = Force down
T = mg = (3.6 kg)(9.8 m/sec²) = 35.28 N
Refer to the diagram below for the next few problems.
T1x = T2x and T1y + T2y = F
T1cosθ1 = T2cosθ2 and T1sinθ1 + T2sinθ2 = F
T2 = (T1cosθ1)/cosθ2 and T1sinθ1 + [(T1cosθ1)/cosθ2]sinθ2 = F
T1[sinθ1 + [(cosθ1)(tanθ2)] = F ⇒ T1 = F/[sinθ1 + [(cosθ1)(tanθ2)]
T1 = (5.6 N)/[sin25° + [(cos25°)(tan25°)] = 6.63 N
T2 = (T1cosθ1)/cosθ2 = (6.63 N)(cos25°)/(cos25°) = 6.63 N
T1x = T2x and T1y + T2y = F
F = T1y + T2y = T1sinθ1 + T2sinθ2
F = (38 N)(sin15°) + (38 N)(sin15°) = 19.67 N
T1x = T2x and T1y + T2y = F
⇒ T1cosθ1 = T2cosθ2 and T1sinθ1 + T2sinθ2 = F
T1cosθ1 = T2cosθ2 and T1 = T2 ⇒ cosθ1 = cosθ2 ⇒ θ1 = θ2
Tsinθ1 + Tsinθ1 = F ⇒ sinθ1 = F/(2T)
θ1 = sin-1[F/2T] = sin-1[(12 N)/{2(22 N)}] = 15.8° = θ2
F = T1y + T2y = T1sinθ1 + T2sinθ2
F = (8 N)(sin20°) + (5 N)(sin30°) = 5.24 N
T1x = T2x and F = T1y + T2y
⇒ T1cosθ1 = T2cosθ2 and F = T1sinθ1 + T2sinθ2
⇒ T1 = T2cosθ2/cosθ1 and F = (T2cosθ2/cosθ1)sinθ1 + T2sinθ2
⇒ F = T2cosθ2tanθ1 + T2sinθ2 ⇒ tanθ1 = (F - T2sinθ2)/T2cosθ2
⇒ tanθ1 = [(40 N) - (30 N)sin56.31°]/[(30 N)cos56.31°] = 0.9037
θ1 = tan-10.9037 = 42.1°
T1 = [F - T2sinθ2]/sinθ1 = [(40 N) - (30 N)sin56.31°]/sin42.1° = 22.43 N
T1x = T2x and F = T1y + T2y
⇒ T1cosθ1 = T2cosθ2 and F = T1sinθ1 + T2sinθ2
T1 = T2 = T and θ1 = θ2 = θ = 90° - 15° = 75°
⇒ F = Tsinθ + Tsinθ = 2Tsinθ
⇒ T = F/(2sinθ) = (600 N)/(2sin75°) = 311 N
Using the distances:
tanθ1 = (1 m)/(4 m) ⇒ θ1 = 14° and tanθ2 = (1 m)/(12 m) ⇒ θ2 = 4.76°
T1x = T2x and F = T1y + T2y
⇒ T1cosθ1 = T2cosθ2 and F = T1sinθ1 + T2sinθ2
⇒ T1 = T2cosθ2/cosθ1 and F = (T2cosθ2/cosθ1)sinθ1 + T2sinθ2
⇒ F = T2cosθ2tanθ1 + T2sinθ2 ⇒ T2 = F/[cosθ2tanθ1 + sinθ2]
⇒ T2 = (500 N)/[cos4.76°tan14° + sin4.76°] = 1509 N
⇒ T1 = T2cosθ2/cosθ1 = T1 = (1509 N)cos4.76°/cos14° = 1549 N
F = (mg)sinθ = (35 N)sin25° = 14.8 N
Whole System:
netForce = Fg2 - Fg1 = ma
= (0.4 kg)(9.8 m/sec²) - (0.15 kg)(9.8 m/sec²) = 2.45 N
= 2.54 N = ma
a = (2.45 N)/(0.55 kg) = 4.45 m/sec²
Isolate the 0.4 kg Mass:
netForce = Fg2 - T2 = ma
T2 = Fg2 - ma = (0.4 kg)(9.8 m/sec²) - (0.4 kg)(4.45 m/sec²)
T2 = 2.14 N
Whole System:
netForce = Fg2 = (m1 + m2)a
= (2 kg)(9.8 m/sec²) = 19.6 N = (5 kg)a
a = (19.6 N)/(5 kg) = 3.92 m/sec²
Isolate the 2 kg Mass:
netForce = Fg2 - T = m2a
T = Fg2 - m2a = (2 kg)(9.8 m/sec²) - (2 kg)(3.92 m/sec²)
T = 11.76 N
Fgx = Fgsinθ ; Fgy = Fgcosθ ; Fn = Fgy ; fk = μkFn
m = (20 N)/(9.8 m/sec²) = 2.04 kg
x-axis (along the incline):
netForce = Fgx - fk = ma
fk = Fgx - ma = (20 N)sin30° - (2.04 kg)(2.34 m/sec²) = 5.22 N
y-axis (perpendicular to the plane):
fk = μkFn
μk = fk/Fn = (5.22 N)/[(20 N)cos30°]
μk = 0.3
F12 = (12 kg)(9.8 m/sec²) = 117.6 N ; F5 = (5 kg)(9.8 m/sec²) = 49 N
F5x = F5sinθ = (49 N)sin25° = 20.71 N ; F5y = F5cosθ = (49 N)cos25° = 44.41 N
Fn = F5y = 44.41 N ; fk = μkFn = (0.11)(44.41 N) = 4.88 N
Whole System:
netForce = F12 - fk - F5x = (m12 + m5)a
= 117.6 N - 4.88 N - 20.71 N = 92 N = (17 kg)a
a = (92 N)/(17 kg) = 5.41 m/sec²
Isolate the 12 kg Mass:
netForce = F12 - T = m12a
T = F12 - m12a = 117.6 N - (12 kg)(5.41 m/sec²) = 52.68 N
fs = Fc ; fs = μsFn ; Fc = mv²/r ; Fn = mg
⇒ μsmg = mv²/r ⇒ μsg = v²/r
⇒ v = [rμsg]½ = [(0.5)(9.8 m/sec²)(20 m)]½ = 9.9 m/sec
See example #2 in the Centripetal Force section of Newton's Laws for a diagram.
Fgx = Fcx
Fgsinθ = Fccosθ
⇒ tanθ = Fc/Fg = (m)(v²/r)/mg = v²/rg
= [(240 km/h)(1000 m/km)(1 h/3600 sec)]² /(9.8 m/sec²)(975 m)
= .466
⇒ θ = tan-1(.466) = 24.9°
At the top of the hill the gravitational force pulling the car down must at least equal the centripetal force that would make the car go straight (at a tangent to the curve, away from the center). The maximum speed would be when those two forces are equal: Fg = Fc.
⇒ mg = mv²/r
⇒ v =[rg]½ = [(30 m)(9.8 m/sec²)]½ = 17.15 m/sec²
W = Fs = mgh = (0.75 kg)(9.8 m/sec²)(1.5 m) = 11.03 J
W = Fs = Fxsx = [(1.5 kg)(9.8 m/sec²)(sin20°)](2 m) = 10.06 J
W = Fs ⇒ s = W/F = (18 J)/(25 N) = 0.72 m
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + Fs
Set h = 0 at the bottom of the incline.
⇒ ½m(7 m/sec)² + m(9.8 m/sec²)[(2 m)(sin20°)] = ½mvf² + 0 + 0
The mass cancels out
⇒ vf² = 2{½(7 m/sec)² + (9.8 m/sec²)[(2 m)(sin20°)]}
⇒ vf = (62.41 m²/sec²)½ = 7.9 m/sec
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + Fs
Set h = 0 at 8 m. Friction-free ⇒ W = 0. From rest ⇒ vi = 0.
⇒ 0 + m(9.8 m/sec²)(4 m) = ½mvf² + 0 + 0
The mass cancels out
⇒ vf = [2{9.8 m/sec²)(4 m)]½ = 8.85 m/sec
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + W
Set h = 0 at the bottom of the incline. Fg = mg
⇒ W = fk(s) = µkFn(s) = µkFgy(s) = µk(mgcosθ)(s)
With this W the mass will still cancel out. hi = (3.3 m)(sin50°) = 2.528 m.
⇒ 0 + (9.8 m/sec²)(2.528 m) = ½vf² + 0 + (0.12)(9.8 m/sec²)(cos50°)(3.3 m)
⇒ 0 + 24.774 m²/sec² = ½vf² + 0 + 2.495 m²/sec²
⇒ vf = [2(24.774 m²/sec² - 2.495 m²/sec²)]½ = 6.68 m/sec
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + Fs
Set h = 0 at the bottom of the incline. hi = 1.75 m - 0.25 m = 1.5 m. W = 0.
Fg = mg Fgx = mgsinθ
With W = 0 the mass will cancel out.
⇒ 0 + (9.8 m/sec²)(1.5 m) = ½vf² + 0 + 0
⇒ vf = [2(9.8 m/sec²)(1.5 m)]½ = 5.42 m/sec
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + W
Set h = 0 at the bottom of the incline. hi = hf = 0. vi = 5.42 m/sec. vf = 0.
W = Fs = fks = Fnµks = Fgµks = (mg)(µk)(s)
⇒ ½mvi² + 0 = 0 + 0 + (mg)(µk)(s)
Divide both sides by the mass and multiply both sides by 2.
⇒ vi² + 0 = 0 + 0 + (2)(g)(µk)(s)
⇒ s = (vi²)/[(2)(g)(µk)] = (5.42 m/sec)²/[(2)(9.8 m/sec²)(0.11)] = 13.6 m
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + Fs
Set h = 0 at the bottom. Friction-free (ignore air friction) ⇒ W = 0.
vix = (20 m/sec)(cos30°) = 17.32 m/sec viy = (20 m/sec)(sin30°) = 10 m/sec
The mass again cancels out. In the vertical direction:
⇒ ½(10 m/sec)² + (9.8 m/sec²)(15 m) = ½vfy² + 0 + 0
⇒ vfy = {2[(50 m²/sec²) + (147 m²/sec²)]}½ = 19.8 m/sec
vf = [vfx² + vfy²]½ = [(17.32 m/sec)² + (19.8 m/sec)²]½ = 26.3 m/sec
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + Fs
Set h = 0 at 20 m. hf = 5 m. Assume friction-free ⇒ W = 0.
vi = (75 km/hr)(1000 m/1 km)(1 hr/3600 sec) = 20.83 m/sec
The mass again cancels out. The velocity at the top of the second hill must be at least zero (a). The minimum speed is when the final velocity is zero (b).
⇒ ½(20.83 m/sec)² = ½vf² + (9.8 m/sec²)(5 m) + 0
⇒ vf = [2{(217 m²/sec²) - (49 m²/sec²)}]½ = 18.33 m/sec
⇒ The car will go over the top of the hill at 18.33 m/sec. (Part a)
Part b: vf = 0 ⇒ vi = [2ghf]½ = 9.9 m/sec
KEi + PEi = KEf + PEf + W ⇒ ½mvi² + mghi = ½mvf² + mghf + Fs
Set h = 0 at 5 m down the ramp. hi = (5 m)sin30° = 2.5 m. hf = 0 m.
vi = 0. vf = 1 m/sec. m = Fg/g = (500 N)/(9.8 m/sec²) = 51 kg
W = Fs = (Fgx - fk)s = (Fgsinθ - Fnµk)s = (Fgsinθ - Fgyµk)s
= (Fgsinθ - [Fgcosθ]µk)s = Fg[sinθ]s - Fg[cosθ]µks
= (500 N)(sin30°)(5 m) - (500 N)(cos30°)(µk)(5 m) = 1250 J - (2165 J)µk
⇒ 0 + mghi = ½mvf² + 0 + W
⇒ 0 + (51 kg)(9.8 m/sec²)(2.5 m) = ½(51 kg)(1 m/sec)² + 0 + 1250 J - (2165 J)µk
⇒ µk = [½(51 kg)(1 m/sec)² + 1250 J - (51 kg)(9.8 m/sec²)(2.5 m)]/(2165 J) = 0.012
pi = pf ⇒ p1i + p2i = p1f + p2f ⇒ m1v1i + m2v2i = m1v1f + m2v2f
In this case: m1v1i + m2v2i = (m1 + m2)vf
⇒ vf = (m1v1i + m2v2i)/(m1 + m2) = [(0.4 kg)(0.12 m/sec) + 0]/(0.4 kg + 0.35 kg)
⇒ vf = 0.064 m/sec
pi = pf ⇒ p1i + p2i = p1f + p2f ⇒ m1v1i + m2v2i = m1v1f + m2v2f
In this case: m1v1i + m2v2i = (m1 + m2)vf
⇒ vf = (m1v1i + m2v2i)/(m1 + m2)
⇒ vf = [(0.4 kg)(0.12 m/sec) + (0.35 kg)(-0.06 m/sec)]/(0.4 kg + 0.35 kg)
⇒ vf = 0.036 m/sec
pi = pf ⇒ p1i + p2i = p1f + p2f ⇒ m1v1i + m2v2i = m1v1f + m2v2f
In this case: 0 = m1v1f + m2v2f
⇒ v2f = -m1v1f/m2
⇒ v2f = -[(55 kg)(2 m/sec)]/(45 kg) = -2.44 m/sec
⇒ v2f = 2.44 m/sec away from the boy
pi = pf ⇒ p1i + p2i = p1f + p2f ⇒ m1v1i + m2v2i = m1v1f + m2v2f
In this case: 0 = m1v1f + m2v2f
⇒ v2f = -m1v1f/m2
⇒ v2f = -[(1.5 kg)(1 m/sec)]/(50 kg) = -0.03 m/sec
⇒ v2f = 0.03 m/sec away from the book
Conservation of Energy ⇒ KEi + PEi = KEf + PEf + W
Set h = 0 at the height of the billiard balls. ⇒ All PE = 0. W = 0 (elastic).
⇒ ½m1v1i² + ½m2v2i² = ½m1v1f² + ½m2v2f² ⇒ m1v1i² + m2v2i² = m1v1f² + m2v2f²
⇒ (0.5 kg)(0.15 m/sec)² + (0.35 kg)(-0.2 m/sec)² = 0.02525 J = m1v1f² + m2v2f²
⇒ 0.02525 = (0.5)v1f² + (0.35)v2f² (From Cons. of Energy, two unknowns)
Conservation of Momentum ⇒ m1v1i + m2v2i = m1v1f + m2v2f
⇒ (0.5 kg)(0.15 m/sec) - (0.35 kg)(0.2 m/sec) = 0.005 kg-m/sec = m1v1f + m2v2f
⇒ 0.005 = (0.5)v1f + (0.35)v2f (From Cons. of Momentum, two unknowns)
Substitute v2f = (0.005 - (0.5)v1f)/(0.35) into Cons. of Energy Eqn.
⇒ 0.02525 = (0.5)v1f² + (0.35)[(0.005 - (0.5)v1f)/(0.35)]²
⇒ (1.2143)v1f² - (0.01429)v1f - 0.02518 = 0 ⇒ v1f = +0.15 m/sec or -0.138 m/sec
⇒ v1f = -0.138 m/sec and v2f = 0.211 m/sec
See webpage for more details. Set h = 0 at bottom.
After bullet is in the block to maximum height.
⇒ ½(m1 + m2)vi² + 0 = 0 + (m1 + m2)ghf + 0
⇒ vi = [(2)([m1 + m2]ghf)/(m1 + m2)]½ = [(2)(9.8 m/sec²)(0.12 m)]½
= 1.534 m/sec The velocity just after the bullet is embedded in the block.
Before the bullet hits to just after the bullet is embedded in the block.
Use conservation of momentum:
⇒ (0.01 kg)v1i + 0 = (1.501 kg)(1.534 m/sec)
⇒ v1i = (1.501 kg)(1.534 m/sec)/(0.01 kg) = 230.2 m/sec
Before bullet is in the block to maximum height.
To get W use conservation of energy from before collision to maximum height.
½(0.01 kg)(230.2 m/sec)² + 0 + 0 + 0 = 0 + (1.51 kg)(9.8 m/sec²)(0.12 m) + W
⇒ W = 263.2 J
From conservation of energy when W = 0 (elastic collision), initial and final height is at zero, m2 = 3m1, v2i = 0:
½m1v1i² + 0 + 0 + 0 = ½m1v1f² + ½(3m1)v2f² + 0 + 0 + 0
v1i² = v1f² + 3v2f² ⇒ (0.5)² = v1f² + 3v2f²
From conservation of momentum:
m1v1i + 0 = m1v1f + 3m1v2f
v1i = v1f + 3v2f ⇒ 0.5 = v1f + 3v2f ⇒ v1f = 0.5 - 3v2f
Substitute v1f into the energy equation, and then solve for v2f:
⇒ (0.5)² = (0.5 - 3v2f)² + 3v2f² = (0.5)² - (2)(0.5)(3v2f) + (3v2f)² + 3v2f²
⇒ 0 = -3v2f + 12v2f² = (3)(-1 + 4v2f)(v2f)
The two roots of the equation are v2f = 0 (physically impossible), or v2f = 0.25.
v2f = 0.25 m/sec and v1f = 0.25 - 3v2f = 0.25 - 3(0.25) = -0.5 m/sec
Conservation of Energy ⇒ KEit + KEir + PEi = KEft + KEfr + PEf + W
⇒ ½mvi² + ½Iωi² + mghi = ½mvf² + ½Iωf² + mghf
Set h = 0 at the bottom of the incline. W = 0, vi = 0, ωi = 0, and hf = 0.
⇒ 0 + 0 + mghi = ½mvf² + ½Iωf² + 0
⇒ I = [mghi - ½mvf²]/[½ωf²] ; ωf = vf/r = (12 m/sec)/(0.01 m) = 1200 rad/sec
⇒ I = [(0.02 kg)(9.8 m/sec²)(12 m) - ½(0.02 kg)(12 m/sec)²]/[½(1200 rad/sec)²]
⇒ I = 1.27 x 10-6 kg-m²
Conservation of Energy ⇒ KEit + KEir + PEi = KEft + KEfr + PEf + W
⇒ 0 + 0 + mghi = ½mvf² + ½Iωf² + 0 + 0
⇒ ghi = ½vf² + ½[⅔r²][vf/r]² = ½vf² + ⅓vf² = ⅚vf²
⇒ vf = [(6/5)ghi]½
⇒ vf = 3.07 m/sec
From conservation of energy: W = 0 (elastic collision), initial and final height is along the track where we assign h equal to zero and v2i = 0:
½m1v1i² + 0 + 0 + 0 = ½m1v1f² + ½(m2)v2f² + 0 + 0 + 0
the one-half and the mass will cancel out, so
v1i² = v1f² + v2f²
From conservation of momentum:
m1v1i + 0 = m1v1f + m2v2f but m1 = m2, so
v1i = v1f + v2f ⇒ v1f = v1i - v2f and substituting into energy equation:
⇒ v1i² = (v1i - v2f)² + v2f² = v1i² - 2v1iv2f + v2f² + v2f²
⇒ 0 = 2v2f(v2f - v1i)
The two roots of the equation are v2f = 0 (physically impossible), or v2f = v1i.
⇒ v2f = v1i
From conservation of energy: W = 0 (elastic collision), initial and final height is along the track where we assign h equal to zero and v2i = 0:
½m1v1i² + 0 + 0 + 0 = ½m1v1f² + ½(m2)v2f² + 0 + 0 + 0
the one-half and the mass will cancel out, so
v1i² = v1f² + v2f²
From conservation of momentum:
m1v1i + 0 = m1v1f + m2v2f but m1 = m2, so
v1i = v1f + v2f ⇒ v2f = v1i - v1f and substituting into energy equation:
⇒ v1i² = v1f² + (v1i - v1f)² = v1f² + v1i² - 2v1iv1f + v1f²
⇒ 0 = 2v1f(v1f - v1i)
The two roots of the equation are v1f = v1i (physically impossible), or v1f = 0.
⇒ v1f = 0
L = 2 m
Fb = 20 N
Fbx = (20 N)sin50° = 15.32 N
Fby = (20 N)cos50° = 12.86 N
Fmx = (10 N)sin50° = 7.66 N
Fmy = (10 N)cos50° = 6.43 N
Fwy = (15 N)sin50° = 11.49 N
Forces in x: Fw = Ff = 15 N
Forces in y: Fv = 20 N + 10 N = 30 N
Set l = 0 at the bottom. τin = τout ⇒ (Fwy)lw = (Fby)lb + (Fmy)lm
⇒ (11.49 N)(2 m) = (12.86 N)(1 m) + (6.43 N)(x) ⇒ x = 1.57 m
L = 2.5 m; θ=35°
Fb = 40 N
Fbx = (40 N)sin55°
= 32.77 N
Fby = (40 N)cos55°
= 22.94 N
Fm = 600 N
Fmx = (600 N)sin55° = 491.49 N
Fmy = (600 N)cos55° = 344.15 N
Fwy = (20 N)sin55° = 16.38 N
Fwf = 15 N (An upward frictional force at the wall, not shown in diagram.)
Fwfy = (15 N)cos35° = 12.28 N
Forces in x: Fw = Ff = 20 N
Forces in y: Fv + Fwfy = 40 N + 600 N = 640 N
Set l = 0 at the bottom. τin = τout ⇒ (Fwy)lw + (Fwfy)lwf = (Fby)lb + (Fmy)lm
⇒ (16.38 N)(2.5 m) + (12.28 N)(2.5 m) = (22.94 N)(1.25 m) + (344.15 N)(x)
⇒ x = 0.125 m
Fb = 50 N;
Fm = ?
Forces in y: Fv = Fb + Fm
Set l = 0 at the Fv.
τin = τout ⇒ (Fm)lm = (Fb)lb ⇒ (Fm)(0.6 m) = (50 N)(0.9 m)
⇒ Fm = 75 N
Fb = (100 kg)(9.8 m/sec²) = 980 N;
Fm = 500 N
Forces in y: Fv = Fb + Fm
Set l = 0 at the Fv.
τin = τout ⇒
(Fm)lm = (Fb)lb
⇒
(500 N)(0.8 m) = (980 N)(x)
⇒ x = 0.408 m
⇒ xcm = 1.208 m from the end with the hanging mass.
5 kg ⇒ (5 kg)(9.8 m/sec²) = 49 N
8 kg ⇒ (8 kg)(9.8 m/sec²) = 78.4 N
Forces in y: T1 + T2 = 49 N + 5 N + 78.4 N = 132.4 N
Set l = 0 at the T2.
τin = τout ⇒ (T1)(0.3 m) + (78.4 N)(0.15 m) = (5 N)(0.15 m) + (49 N)(0.45 m) ⇒ T1 = 36.8 N
⇒ T2 = 132.4 N - 36.8 N = 95.6 N
25 kg ⇒ (25 kg)(9.8 m/sec²) = 245 N
Set the x-axis along the supporting rod. Tx = Tsin50° and Ty = Tcos50°
Set l = 0 at the bottom of the supporting rod.
τin = τout ⇒
[(20 N)cos40°](L/2) + [(245 N)cos40°](L) = (Ty)(L)
⇒
Ty = 195.3 N
⇒ T = Ty/cos50° = 303.9 N
25 kg ⇒ (25 kg)(9.8 m/sec²) = 245 N
Set the x-axis along the supporting rod. Tx = Tsin50° and Ty = Tcos50°
Set l = 0 at the bottom of the supporting rod.
τin = τout ⇒
[(20 N)cos40°](L/4) + [(245 N)cos40°](L) = (Ty)(L)
⇒
Ty = 191.5 N
⇒ T = Ty/cos50° = 297.9 N